Fuzzy inference guided cellular automata urban-growth modelling using multi-temporal satellite images

نویسندگان

  • S. Al-kheder
  • J. Wang
  • J. Shan
چکیده

This paper presents a fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on urban development is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. A defuzzification process converts the development potential to the required neighborhood development level, which is taken by cellular automata as initial approximation in its transition rules. Such approximations are updated through spatial calibration on a township gird and temporal calibration with multi temporal satellite images. Assessment of the modeling results is based on three evaluation measures: Fitness, Type I and Type II errors. The approach is applied to model the growth of city Indianapolis, Indiana over a period of 30 years from 1973 to 2003. A fitness level of 100% 20% with 30% average errors can be achieved for 80% of the townships in urban growth prediction. ±

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Cellular Automata Approach for Urban Growth Modeling

This work focuses on adapting artificial intelligence techniques for urban growth modeling using multitemporal imagery. Fuzzy set theory and cellular automata are used for this purpose. Fuzzy set theory preserves the spatial continuity of the growth process through allowing a test pixel to be partially developed unlike the binary crisp system (developed/undeveloped). The development level ident...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

Modeling Urban Growth using Fuzzy Cellular Automata

Urban modeling is an important tool for efficient policy designing. We herein present a methodological framework for urban modeling which attempts to access the multi-level urban growth dynamics and express them in linguistic terms. The suggested framework incorporates a set of fuzzy systems, each one of which focuses on different aspects of the urban growth dynamics, while the systems’ structu...

متن کامل

Evaluation Of A Self-Modifying Cellular Automata In Modelling Urban Growth In Nyeri (Kenya)

Urban growth modelling cellular automata has blossomed due to the advancement in geographic information systems (GIS), remote sensing and computer technology. Among such urban growth models, our urban growth model (UGM), was modified from SLEUTH (Slope Land-use Transport Hill-shade) model. UGM has been integrated in the XULU modeling frame-work (eXtendable Unified Land Use Modelling Platform). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Geographical Information Science

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2008